1. Chapter 5, Section 5.1, Question 018

Use the right triangle below. This triangle is not drawn to scale corresponding to the given data.

Suppose \(a = 9 \) and \(c = 10 \). Evaluate \(\theta \) in radians.

Round your answer to three decimal places.

\[\theta = \boxed{\text{\textdegree}} \text{ radians} \]

*Significant digits not applicable; the absolute tolerance is +/-0.002

2. Chapter 5, Section 5.1, Question 024

Use the right triangle below. This triangle is not drawn to scale corresponding to the given data.

Suppose \(a = 11 \) and \(b = 10 \). Evaluate \(\varphi \) in degrees.

Round your answer to one decimal place.

\[\varphi = \boxed{\text{\textdegree}} \text{ degrees} \]

*Significant digits not applicable; the absolute tolerance is +/-0.2

3. Chapter 5, Section 5.1, Question 026
Find the angle between the two sides of length 4 in an isosceles triangle that has one side of length 3 and two sides of length 4.

Round your answer to one decimal place.

\[\text{degrees} \]

Significant digits not applicable; the absolute tolerance is +/-0.1

4. Chapter 5, Section 5.1, Question 029

Find the smallest positive number \(t \) such that

\[10^{\cos t} = 5. \]

Round your answer to three decimal places.

\[t = \text{rad} \]

Significant digits not applicable; the absolute tolerance is +/-0.002

5. Chapter 5, Section 5.1, Question 030

Find the smallest positive number \(t \) such that

\[10^{\sin t} = 3. \]

Round your answer to three decimal places.

\[t = \text{rad} \]

Significant digits not applicable; the absolute tolerance is +/-0.002

6. Chapter 5, Section 5.1, Question 032

Find the smallest positive number \(t \) such that
e^{\tan t} = 400.

Round your answer to three decimal places.

\[t = \boxed{\quad} \quad \text{radians} \]

Significant digits not applicable; the absolute tolerance is +/-0.002

7. Chapter 5, Section 5.1, Question 033

Find the smallest positive number \(\gamma \) such that

\[\cos(\tan \gamma) = 0.7. \]

Round your answer to three decimal places.

\[\gamma = \boxed{\quad} \quad \text{radians} \]

Significant digits not applicable; the absolute tolerance is +/-0.002

8. Chapter 5, Section 5.1, Question 036

Find the smallest positive number \(x \) such that

\[\sin^2 x - 20\sin x + 18 = 0. \]

Round your answer to three decimal places.

\[x = \boxed{\quad} \quad \text{radians} \]

Significant digits not applicable; the absolute tolerance is +/-0.002

9. Chapter 5, Section 5.1, Question 044

What is the angle between the positive horizontal axis and the line containing the points \((4, 7)\) and \((8, 4)\)?

Enter a positive angle.
Round your answer to one decimal place.

$$\theta = \text{}^\circ$$ degrees

Significant digits not applicable; the absolute tolerance is +/-0.5

10. Chapter 5, Section 5.1, Question 042
What angle does the line $y = 6x$ in the xy-plane make with the positive x-axis?

Round your answer to one decimal place.

$$\theta = \text{}^\circ$$ degrees

Significant digits not applicable; the absolute tolerance is +/-0.1

11. Chapter 5, Section 5.1, Question 050

Use the right triangle below to find three expressions of the angle, γ in terms of the inverse trigonometric functions.

$$\gamma = \cos^{-1}$$
12. Chapter 5, Section 5.1, Question 052

Without using a calculator, sketch the unit circle and the radius corresponding to $\cos^{-1} 0.1$.

Choose the correct answer.

a.

b.
c.

Answer: ______

d.

e.

13. Chapter 6, Section 6.1, Question 005
Suppose the figure above is part of the graph of the function $5 \sin x$. What is the value of b?

\[b = \]

Significant digits not applicable; exact number, no tolerance

14. Chapter 6, Section 6.1, Question 006

Suppose the figure above is part of the graph of the function $8 \sin(3x)$. What is the value of b?

\[b = \]

Significant digits not applicable; exact number, no tolerance

15. Chapter 6, Section 6.1, Question 008
Suppose the figure above is part of the graph of the function $g \sin (9x)$. What is the value of a?

$a = $

16. Chapter 6, Section 6.1, Question 010

Find the smallest positive number c such that the figure above is part of the graph of the function $\sin (x - c)$.

$c = $
17. Chapter 6, Section 6.1, Question 012

Find the smallest positive number c such that the figure above is part of the graph of the function $\cos(x + c)$.

[Hint: The correct answer is not $\frac{\pi}{2}$.]

c =

18. Chapter 6, Section 6.1, Question 013b

What is the range of the function $5 + \cos x$?

Enter your answer in interval notation.

Range =
19. Chapter 6, Section 6.1, Question 013d

What is the period of the function $5 + \cos x$?

Period =

20. Chapter 6, Section 6.1, Question 014c

What is the amplitude of the function $3 - \cos x$?

Amplitude = ___________ *1

Significant digits not applicable; exact number, no tolerance

21. Chapter 6, Section 6.1, Question 018c

What is the amplitude of the function $9\cos(3\pi x)$?

Amplitude = ___________ *1

Significant digits not applicable; exact number, no tolerance

22. Chapter 6, Section 6.1, Question 018d

What is the period of the function $6\cos(3\pi x)$?

Enter an exact answer.
23. Chapter 6, Section 6.1, Question 022

Assume that f is the function defined by

$$f(x) = a \cos(bx + c) + d,$$

where a, b, c, and d are constants.

Find two distinct values for a so that f has amplitude $\frac{a}{5}$.

Enter the exact answers in increasing order.

$$a =$$

$$a =$$

24. Chapter 6, Section 6.1, Question 030

Assume that f is the function defined by
\[f(x) = a \cos(bx + c) + d \]

where \(a\), \(b\), \(c\), and \(d\) are constants.

Find values for \(a\), \(d\), \(c\), and \(b\) with \(a > 0\) and \(b > 0\) and \(0 \leq c \leq \pi\), so that \(f\) has range \([-7, 3]\), \(f(0) = -3\), and \(f\) has period 10.

Enter the exact answers.

\[a = \]

\[d = \]

\[c = \]

\[b = \]